On Out-of-Sample Statistics for Time-Series

نویسندگان

  • François Gingras
  • Yoshua Bengio
  • Claude Nadeau
چکیده

partielle permise avec citation du document source, incluant la notice ©. Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source. Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées et les opinions émises sont sous l'unique responsabilité des auteurs et ne représentent pas nécessairement les positions du CIRANO ou de ses partenaires. This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent positions of CIRANO or its partners. Résumé / Abstract Cet article étudie une statistique hors-échantillon pour la prédiction de séries temporelles qui est analogue à la très utilisée statistique R 2 de l'ensemble d'entraînement (in-sample). Nous proposons et étudions une méthode qui estime la variance de cette statistique hors-échantillon. Nous suggérons que la statistique hors-échantillon est plus robuste aux hypothèses distributionnelles et asymptotiques pour plusieurs tests faits pour les statistiques sur l'ensemble d'entraînement (in-sample). De plus, nous affirmons qu'il peut être plus important, dans certains cas, de choisir un modèle qui généralise le mieux possible plutôt que de choisir les paramètres qui sont le plus proches des vrais paramètres. Des expériences comparatives furent réalisées sur des séries financières (rendements journaliers et mensuels de l'indice du TSE300). Les expériences réalisées pour plusieurs horizons de prédictions, et nous étudions la relation entre la prédictibilité (hors-échantillon), la variabilité de la statistique R 2 hors-échantillon, et l'horizon de prédiction. This paper studies an out-of-sample statistic for time-series prediction that is analogous to the widely used R 2 in-sample statistic. We propose and study methods to estimate the variance of this out-of-sample statistic. We suggest that the out-of-sample statistic is more robust to distributional and asymptotic assumptions behind many tests for in-sample statistics. Furthermore we argue that it may be more important in some cases to choose a model that generalizes as well as possible rather than choose the parameters that are closest to the true parameters. Comparative experiments are performed on a financial time-series (daily and monthly returns of the TSE300 index). The experiments are performed for varying prediction horizons and we study the relation between predictibility (out-of-sample R 2), variability of the …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New optimized model identification in time series model and its difficulties

Model identification is an important and complicated step within the autoregressive integrated moving average (ARIMA) methodology framework. This step is especially difficult for integrated series. In this article first investigate Box-Jenkins methodology and its faults in detecting model, and hence have discussed the problem of outliers in time series. By using this optimization method, we wil...

متن کامل

On Conditional Inactivity Time of Failed Components in an (n-k+1)-out-of-n System with Nonidentical Independent Components

In this paper, we study an (n-k+1)-out-of-n system by adopting their components to be statistically independent though nonidentically distributed. By assuming that at least m components at a fixed time have failed while the system is still working, we obtain the mixture representation of survival function for a quantity called the conditional inactivity time of failed components in the system. ...

متن کامل

Time Series Modeling of Coronavirus (COVID-19) Spread in Iran

Various types of Coronaviruses are enveloped RNA viruses from the Corona-viridae family and part of the Coronavirinae subfamily. This family of viruses affects neurological, gastrointestinal, hepatic, and respiratory systems. Recently, a new memb-er of this family, named Covid-19, is moving around the world. The expansion of Covid-19 carries many risks, and its control requires strict planning ...

متن کامل

On the Detection of Trends in Time Series of Functional Data

A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...

متن کامل

On Out-of-Sample Statistics for Financial Time-Series

This paper studies an out-of-sample statistic for time-series prediction that is analogous to the widely used R in-sample statistic. We propose and study methods to estimate the variance of this out-of-sample statistic. We suggest that the out-of-sample statistic is more robust to distributional and asymptotic assumptions behind many tests for insample statistics. Furthermore we argue that it m...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002